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The prehistory probability density for a stochastic system with Gaussian white noise is analyzed in terms of
a Fokker-Planck equation. The results are compared with those provided by the method of the optimal path,
and with those of analog simulation experiments.@S1063-651X~96!07607-6#

PACS number~s!: 05.40.1j, 02.50.2r, 05.20.2y

In recent years, new approaches to the investigation of
rare events in systems driven by noise have been proposed.
In @1,2#, the description of large rare excursions of the dy-
namical variable away from the stable point is given in terms
of a new statistical quantity, the so calledprehistory prob-
ability density. The prehistory problem can be briefly formu-
lated as follows. Let us assume a system at equilibrium so
that the one-time probability densityP st(x) does not depend
on time. If we know that at timet f the system is atxf , we
ask for the probability densityph(x,t;xf ,t f) that the system
was at pointx at time t,t f . So we want to know about the
behavior of the system prior to the fulfillment of a given
condition. Dykmanet al. formulate the problem in terms of a
variational principle which allows them to express the pre-
history distribution in terms of a Gaussian centered about the
optimal path in the limit of small noise strength. For bistable
potentials, the dispersion might show a nonmonotonic be-
havior which is more pronounced the further the pointxf is
from a stable position. Also in@1# the results of analog ex-
periments are compared with the theoretical ideas. Although
the theory provides a good qualitative description of the ex-
periments, there are some quantitative discrepancies in the
behavior of the dispersion especially for large deviations
from the stable point. In this report, we present the results
obtained using an alternative formulation of the prehistory
problem which is adequate for white noise, and does not
require the use of a variational principle.

Let us consider a system described by a single stochastic
variable, whose dynamics is given by the Langevin equation

ẋ~ t !52U8~x!1j~ t !, ~1!

wherej(t) is a Gaussian white noise with

^j~ t !&50, ^j~ t !j~s!&5Dd~ t2s!. ~2!

Let w2(xi ,t i ;xf ,t f) andw3(xi ,t i ;x,t;xf ,t f) be the two-
and three-time joint probability densities for times
t i,t,t f , of the stochastic processx(t). Following @1#, we
define the prehistory probability density as

ph~x,t;xf ,t f !5Sw3~xi ,t i ;x,t;xf ,t f !

w2~xi ,t i ;xf ,t f !
D
t i→2`

, ~3!

where the particularization fort i→2` indicates that the
system was prepared in some statexi in the far past and then,
at any finite time liket or t f , we will find it at equilibrium.

Using the definitions ofw2 andw3 in terms of conditional probability
densities, we can immediately write

ph~x,t;xf ,t f !5
Pst~x!

Pst~xf !
p1u1~x,tuxf ,t f !, ~4!

where p1u1(x,tuxf ,t f) (t,t f) is the solution of the back-
ward Fokker-Planck equation with the condition
p1u1(xf ,0ux,0)5d(x2xf). If we use now the symmetry prop-
erty of the two-times joint probability density with respect to
the exchange of arguments@3# and particularize it for a sta-
tionary Markovian process, we get

p1u1~x,tuxf ,t f !
Pst~x!

Pst~xf !
~ t,t f !5p1u1~x,tuxf ,t f ! ~ t.t f !.

~5!

The conditional probability density on the right hand side
of Eq. ~5! can be identified as a function of its first argument,
with the forward probability densityp1u1

f (x,tuxf ,t f)(t.t f),
whose temporal evolution is given by the solution of the
forward Fokker-Planck equation

]

]t
p1u1
f ~x,tuxf ,t f !5D~x!p1u1

f ~x,tuxf ,t f !, ~6!

with the initial condition p1u1
f (x,0uxf ,0)5d(x2xf), and

where

D~x!5
]

]x
U8~x!1

D

2

]2

]x2
. ~7!

Combining Eq.~4! and Eq.~5!, we can then write

ph~x,t;xf ,t f ! ~ t,t f !5p1u1
f ~x,tuxf ,t f ! ~ t.t f !, ~8!

which shows that the prehistory distribution for timest prior
to the final observation timet5t f can be found by solving
the appropriate forward Fokker-Planck~FP! problem.

The Fokker-Planck equation cannot, in general, be solved
in an exact way, so we must resort to numerical integration
schemes. A useful method for the study of the time depen-
dent solutions of the forward Fokker-Planck equation is
based on the split operator scheme introduced by Feitet al.
to solve the time dependent Schro¨dinger equation@4#. We
have applied this method to problems of the type given by
Eq. ~6! with different types of drift terms@5#. As we are
interested in the knowledge of the prehistory probability den-

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/2125~3!/$10.00 2125 © 1996 The American Physical Society



sity we have solved the forward FP equation with an initial
condition given by ad function centered at different values
of xf . We have considered potentials of the form

U~x!5a
x2

2
1b

x4

4
, ~9!

and so, for different values of the coefficientsa andb, we
can analyze the dynamics for both mono- and bistable situ-
ations.

In Fig. 1 we have considered the case of a bistable poten-
tial with a521 andb51, and different values ofxf . We
have takenD50.027, which is small enough to allow us to
compare with the asymptotic limit of Dykmanet al. and, at
the same time, ensures the convergence of the numerical
procedure. The FP equation is solved during time intervals
such that the probability density remains localized in the
original well. From the solution, it is straightforward to com-
pute the first two cumulants, and from here, the noise inde-
pendent dispersion parameters(^x&,xf)5^x2&2^x&2/D,

evaluated as a function of^x& for each value ofxf . In the
Gaussian approximation of@1#, this quantity is given by

s~x,xf !5@U8~x!#2E
x

xf
dy@U8~y!#23, ~10!

wherex5xop, xop being the optimum value of the stochastic
variable at each instant of timet,0, obtained from the so-
lution of

ẋop5U8~xop!

with the conditionxop(0)5xf . It is clear from the plots that
the results of the numerical solution match quite well those
of the analytical theory. In particular, we notice the non-

FIG. 1. Plot of the dispersion parameters(^x&,xf) for a bistable
potential with noise strengthD50.027 andxf520.2 ~casea),
xf520.3 ~caseb), andxf520.55~casec). Solid lines correspond
to the results of Eq.~ 10!; broken lines correspond to our numerical
results.

FIG. 2. Plot of the numerical results fors(^x&,xf) for a bistable
potential with noise strengthD50.07 andxf520.3 ~diamonds!,
xf520.565~squares!. The plus signs correspond to the experimen-
tal values of Dykmanet al. for the same noise strength.

FIG. 3. The prehistory probability density for a bistable poten-
tial with D50.027 andxf520.3, as a function of time.

FIG. 4. The prehistory probability density for a bistable poten-
tial with D50.3 andxf520.3, as a function of time.
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monotonic behavior of the dispersion, which is more pro-
nounced the fartherxf is from the stable point. The first
moment, as well as the optimum path, does not show the
sudden drop att50 observed in analog simulations@1#. We
have also checked that the dispersion curves are quite inde-
pendent of the noise strength, as long as it is small enough to
guarantee that the probability distribution does not develop a
second peak during the time interval of interest. Thus the
Gaussian approximation around the optimal path provides a
good description even ifD is not asymptotically small.
Clearly, as the observation pointxf gets closer to the un-
stable point, the values ofD needed to guarantee this inde-
pendence get smaller.

Our numerical scheme remains valid for noise strengths
that are not too small, and it is certainly adequate for the
value ofD quoted in Fig. 1~a! of @1#. Thus it seems worth-
while to investigate the dispersion behavior for this noise
strength to analyze the discrepancy between analytical pre-
dictions and experimental findings. In Fig. 2, we show the
output of our calculation forxf520.3 andD50.07. It is
clear that the dispersion values deviate largely from those
observed in the experiments. On the other hand, if we keep
the same noise strength, but we take the end point to be

xf520.32D1/2520.565, the numerical and experimental
curves agree well for values ofx up to x'20.7. These
results indicate that the discrepancy between theory and ex-
periments is probably due to the fact that the final part of a
trajectory seen in the analog experiments consists of a sud-
den jump of orderD1/2 @6#. If we take into account this
uncertainty in the experimental determination of largex, the
coincidence between calculated and experimental values of
the dispersion for these large excursions improves.

In Fig. 3, we show the time evolution of the probability
density for the parametersD50.027 andxf520.3. Notice
that at intermediate times the distribution is broader and its
peak is lower than at longer times, when a kind of focusing
effect is noticeable. During the time interval shown in this
figure, the distribution remains single peaked. Deviations
from Gaussian character are not too strong, as indicated by
the very small values of the cumulants of order higher than
2. The effects on the dynamics as noise is increased can be
seen in Fig. 4, where we show the probability density for a
higher value of the noise strength,D50.3, andxf520.3. It
is clear that now the noise is so large that transitions between
wells are relevant even for not very long times and thus the
distribution quickly develops a second maximum. Thus,
from the point of view of the stochastic trajectories, this
means that there are also contributions to the prehistory
probability density from trajectories which have been able to
overcome the barrier before arriving atxf at the observation
time. During this time regime, the Gaussian approximation
around a single optimum path would fail.

In Fig. 5, we show the behavior of the dispersion for the
monostable case,a51,b51, corresponding toD50.027 for
two different values ofxf . The analytical results obtained
with Eq. ~10! agree very well with our numerical solution.
The nonmonotonic behavior typical of bistable cases does
not show up here. This feature indicates that the nonmo-
notony is due to the fact that the potential energy curve has
more than one minimum, rather than to the anharmonicity of
the potential. Also, deviations from the Gaussian character of
the probability density are much smaller than in the bistable
situation.
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~1992!.
@6# N. Stein~private communication!.

FIG. 5. Plot of the dispersion parameters(^x&,xf) for a
monostable potential with noise strengthD50.027 and
xf520.3,20.55. Broken lines correspond to the results obtained
with Eq. ~10!; the symbols correspond to our numerical results.
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