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Prehistory problem for systems driven by white noise

J. Ganez-Ordoez, J. M. Casado, and M. Morillo
Fisica Teoica, Apartado Correos 1065, 41080 Sevilla, Spain
(Received 15 January 1996; revised manuscript received 25 March 1996

The prehistory probability density for a stochastic system with Gaussian white noise is analyzed in terms of
a Fokker-Planck equation. The results are compared with those provided by the method of the optimal path,
and with those of analog simulation experimef1063-651X96)07607-9
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In recent years, new approaches to the investigation of Using the definitions ofv, andws in terms of conditional probability
rare events in systems driven by noise have been proposetfnsities, we can immediately write
In [1,2], the description of large rare excursions of the dy- P.(X)
namical variable away from the stable point is given in terms Prh(X,tiX; t1) = PS—Dl|1(X,t|Xf o), %)
of a new statistical quantity, the so calledehistory prob- sl(X¢)
ability density The prehistory problem can be briefly formu- ) ,
lated as follows. Let us assume a system at equilibrium s¥/n€re Py (Xtlxs,ty) (t<ty) is the solution of the back-

that the one-time probability densif/(x) does not depend Ward ~Fokker-Planck  equation ~ with ~ the  condition
on time. If we know that at timeé; the system is ax;, we Pj2(X1,0/x,0)= 6(x—x;). If we use now the symmetry prop-

ask for the probability densitp,(x,t;x; ,t;) that the system erty of the two-times joint probability dgnsity Wif[h respect to
was at pointx at timet<t,. So we want to know about the the exchange of argumerit3] and particularize it for a sta-

behavior of the system prior to the fulfillment of a given tionary Markovian process, we get
condition. Dykmaret al. formulate the problem in terms of a P(

variational principle which allows them to express the pre- plll(x,t|xf ,tf)s—

history distribution in terms of a Gaussian centered about the Psi(X¢)
optimal path in the limit of small noise strength. For bistable ®

potentials, the dispersion might show a nonmonotonic be- the congitional probability density on the right hand side
havior which is more pronounced the further the poipis ¢ £q_(5) can be identified as a function of its first argument,
from a stable position. Also ifil] the results of analog ex- i the forward probability densitypfl‘l(x,t|xf ) (t>t),

. ; Lo W
periments are c_ompared with th? theoret|cal_|d9as. Althoqu/hose temporal evolution is given by the solution of the
the theory provides a good qualitative description of the ©X3orward Fokker-Planck equation

periments, there are some quantitative discrepancies in the
behavior of the dispersion especially for large deviations 9
from the stable point. In this report, we present the results Epf1|1(X,t|Xf ,tf)ZD(X)pfl\l(X,ﬂXf L), (6)
obtained using an alternative formulation of the prehistory
prob!em which is adeq.ua.te for vyh|t_e noise, and does Nofith the initial condition pfl‘l(x,0|xf,0)=5(x—xf), and
require the use of a variational principle. where

Let us consider a system described by a single stochastic
variable, whose dynamics is given by the Langevin equation

X(t)=—-U"(x)+£(1), oY)

(t<t)=pya(%tlxs,t)  (t>1).

J D ¢
'D(X)Z(?—XU (X)+§W (7

where&(t) is a Gaussian white noise with Combining Eq.(4) and Eq.(5), we can then write

(£(1))=0, (&(t)é(s))=Dé(t—s).

Let wo(X;,t; i X¢,t5) andws(X;,ti; X, t;X¢,t5) be the two-
and three-time joint probability densities for times
t;<t<t;, of the stochastic procesgt). Following [1], we
define the prehistory probability density as

@ PR EXe t)  (t<t)=pia(X.tix b)) (t>t), (8)

which shows that the prehistory distribution for timegrior
to the final observation timé=t; can be found by solving
the appropriate forward Fokker-Plan@kP) problem.

The Fokker-Planck equation cannot, in general, be solved
in an exact way, so we must resort to numerical integration
schemes. A useful method for the study of the time depen-

) (3) dent solutions of the forward Fokker-Planck equation is
tj——c based on the split operator scheme introduced by dteat.
to solve the time dependent ScHiaoger equatior{4]. We

where the particularization for;— —oo indicates that the have applied this method to problems of the type given by
system was prepared in some stgtén the far past and then, Eq. (6) with different types of drift termg5]. As we are

at any finite time liket or t;, we will find it at equilibrium. interested in the knowledge of the prehistory probability den-

Wa( Xt i X, X5 ,t)
Wo (Xt X¢,tf)

Pr(X,t;Xs,t5) =
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FIG. 1. Plot of the dispersion parametef(x),x;) for a bistable
potential with noise strengtld=0.027 andx;=—0.2 (casea),
x;=—0.3(caseb), andx;= —0.55(casec). Solid lines correspond
to the results of Eq( 10); broken lines correspond to our numerical
results.

sity we have solved the forward FP equation with an initial  F|G. 3. The prehistory probability density for a bistable poten-
condition given by a5 function centered at different values tial with D=0.027 andx;=—0.3, as a function of time.

of X;. We have considered potentials of the form

evaluated as a function d@k) for each value ofk;. In the

2 X4 . . . . . . .
U(x)=a5+bz, 0 Gaussian approximation ¢1], this quantity is given by
Xt
— ’ 2 ’ -3
and so, for different values of the coefficiertsandb, we o(x,xp)=[U'(x)] J; dy[U (y)]"", (10
can analyze the dynamics for both mono- and bistable situ-
ations. wherex= X, Xop being the optimum value of the stochastic

~ InFig. 1 we have considered the case of a bistable poterariable at each instant of tinte<0, obtained from the so-
tial with a=—1 andb=1, and different values of;. We  |ution of

have takerD =0.027, which is small enough to allow us to

compare with the asymptotic limit of Dykmeet al. and, at kopzu’(xop)

the same time, ensures the convergence of the numerical

procedure. The FP equation is solved during time intervalgvith the conditionx,,(0)=X; . It is clear from the plots that
such that the probability density remains localized in thethe results of the numerical solution match quite well those
original well. From the solution, it is straightforward to com- of the analytical theory. In particular, we notice the non-
pute the first two cumulants, and from here, the noise inde-

pendent dispersion parameter({x),x;)=(x?)—(x)?/D,

-1 -0.8 -0.6 -04 -0.2 0
<X>

FIG. 2. Plot of the numerical results fot((x),x;) for a bistable
potential with noise strength =0.07 andx;= —0.3 (diamond$,
x;=—0.565(squares The plus signs correspond to the experimen-  FIG. 4. The prehistory probability density for a bistable poten-
tal values of Dykmaret al. for the same noise strength. tial with D=0.3 andx;=—0.3, as a function of time.
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0.6 — 11— x¢=—0.3—D¥?=—-0.565, the numerical and experimental

curves agree well for values of up to x~—0.7. These

results indicate that the discrepancy between theory and ex-

ﬁ( periments is probably due to the fact that the final part of a

& trajectory seen in the analog experiments consists of a sud-

0.4 SF 1 den jump of orderD¥? [6]. If we take into account this

awt uncertainty in the experimental determination of laxgehe

o L A . coincidence between calculated and experimental values of

s the dispersion for these large excursions improves.

o2 b 6 :,+ i In Fig. 3, we show the time evolution of the probability
density for the parametef3=0.027 andx;= —0.3. Notice

& * that at intermediate times the distribution is broader and its

! peak is lower than at longer times, when a kind of focusing

; effect is noticeable. During the time interval shown in this
0 1t 1 figure, the distribution remains single peaked. Deviations
-08 06 g(': -0.2 0 from Gaussian character are not too strong, as indicated by
the very small values of the cumulants of order higher than
2. The effects on the dynamics as noise is increased can be
monostable potential with noise strengtd=0.027 and S€EN in Fig. 4, where_we show the probability density for a
x;=—0.3,—0.55. Broken lines correspond to the results obtainednigher value of the noise strength=0.3, andx;=—0.3. It
with Eq. (10); the symbols correspond to our numerical results. 1S clear that now the noise is so large that transitions between
wells are relevant even for not very long times and thus the
distribution quickly develops a second maximum. Thus,
from the point of view of the stochastic trajectories, this
means that there are also contributions to the prehistory

moment, as well as the optimum path, does not show th - : . : )
sudden drop at=0 observed in analog simulatiof]. We probability density from trajectories which have been able to
: vercome the barrier before arrivingat at the observation

have also checked that the dispersion curves are quite inde- . T . . S
pendent of the noise strength, as long as it is small enough ge: During this time regime, the Gaussian approximation
guarantee that the probability distribution does not develop ground. a single optimum path W.OUId fail. . .

second peak during the time interval of interest. Thus the In Fig. 5, we show the behavior of the dispersion for the

Gaussian approximation around the optimal path provides g'onostable casa=1b=1, corresponding t® =0.027 for
good description even iD is not asymptotically small. wo different values ofk;. The analytical results obtained

Clearly, as the observation poirt gets closer to the un- %th Eq. (10 agree geLy vyell W't.h c:urfnll;'me[)l?:al solunodn.
stable point, the values @ needed to guarantee this inde- e nonmonotonic behavior typical of bistable cases does
pendence get smaller. not sho_w up here. This feature |nd|cat_es that the nonmo-
Our numerical scheme remains valid for noise strengthgommt/h'S due to j[h_e fact th?rt] th?hpotttanttlrz]il enehrgy curv ('at hafs
that are not too small, and it is certainly adequate for the[mhOre an oné minimum, rathér than to the annarmonicity
R . e potential. Also, deviations from the Gaussian character of
value of D quoted in Fig. 1a) of [1]. Thus it seems worth- the probability densitv are much smaller than in the bistabl
while to investigate the dispersion behavior for this noise_. probability density are much smafer tha € bistable
strength to analyze the discrepancy between analytical pres—'tuatlon'
dictions and experimental findings. In Fig. 2, we show the We acknowledge Professor M. I. Dykman, Professor P.
output of our calculation fox;=—0.3 andD=0.07. Itis V. E. McClintock, and Professor N. D. Stein for their very
clear that the dispersion values deviate largely from thoseseful suggestions and comments. This work is supported by
observed in the experiments. On the other hand, if we keethe Direccimn General de InvestigaaioCientfica y Tecnica
the same noise strength, but we take the end point to bef Spain(Project No. PB92-0682

FIG. 5. Plot of the dispersion parameter({x),x;) for a

monotonic behavior of the dispersion, which is more pro-
nounced the farthek; is from the stable point. The first

[1] M. I. Dykman, P. V. E. McClintock, V. N. Smelyansky, N. D. Chemistry(North-Holland, Amsterdam, 1981
Stein, and N. G. Stocks, Phys. Rev. L&8, 2718(1992. [4] M. Feit, J. Flock, and A. Steiger, J. Comput. Phyg, 412
[2] M. I. Dykman, Phys. Rev. At2, 2020(1990; M. I. Dykman, (1982.
P. V. E. McClintock, N. D. Stein, and N. G. Stocks, Phys. Rev. [5] M. Morillo and J. Ganez-Ordmez, Phys. Rev. M5, 6738
Lett. 67, 933(199)). (1992.

[3] N. G. van Kampen,Stochastic Processes in Physics and [6] N. Stein(private communication



